java基礎二叉搜索樹圖文詳解

 更新時間:2022年03月10日 12:53:42   作者:Dark?And?Grey  
二叉樹是一種非常重要的數據結構,它同時具有數組和鏈表各自的特點,下面這篇文章主要給大家介紹了關于java基礎二叉搜索樹的相關資料,文中通過實例代碼介紹的非常詳細,需要的朋友可以參考下

概念

二叉搜索樹又稱二叉排序樹,它或者是一棵空樹,或者是具有以下性質的二叉樹:
1、若它的左子樹不為空,則左子樹上所有節點的值都小于根結點的值。
2、若它的右子樹不為空,則右子樹上所有節點的值都大于根結點的值。
3、它的左右子樹也分別為二叉搜索樹

直接實踐

準備工作:定義一個樹節點的類,和二叉搜索樹的類。

搜索二叉樹的查找功能

假設我們已經構造好了一個這樣的二叉樹,如下圖

我們要思考的第一個問題是如何查找某個值是否在該二叉樹中?

根據上述的邏輯,我們來把搜索的方法進行完善。

搜索二叉樹的插入操作

根據上述邏輯,我們來寫一個插入節點的代碼。

搜索二叉樹 刪除節點的操作 - 難點

再來分析一下:curDummy 和 parentDummy 是怎么找到“替罪羊”的。

總程序 - 模擬實現二叉搜索樹

class TreeNode{
    public int val;
    public TreeNode left;
    public TreeNode right;
    public TreeNode(int val){
        this.val = val;
    }
}


public class BinarySearchTree {
    TreeNode root;

    //在二叉樹中 尋找指定 val 值的節點
    // 找到了,返回其節點地址;沒找到返回 null
    public TreeNode search(int key){
        TreeNode cur = this.root;
        while(cur != null){
            if(cur.val == key){
                return cur;
            }else if(cur.val < key){
                cur = cur.right;
            }else{
                cur = cur.left;
            }
        }
        return null;
    }
    // 插入操作
    public boolean insert(int key){
        if(this.root == null){
            this.root = new TreeNode(key);
            return true;
        }
        TreeNode cur = this.root;
        TreeNode parent = null;
        while(cur!=null){
            if(key > cur.val){
                parent  = cur;
                cur = cur.right;
            }else if(cur.val == key){
                return false;
            }else{
                parent  = cur;
                cur = cur.left;
            }
        }
        TreeNode node = new TreeNode(key);
        if(parent .val > key){
            parent.left = node;
        }else{
            parent.right = node;
        }
        return true;
    }
    // 刪除操作
    public void remove(int key){
        TreeNode cur = root;
        TreeNode parent = null;
        // 尋找 刪除節點位置。
        while(cur!=null){
            if(cur.val == key){
                removeNode(cur,parent);// 真正刪除節點的代碼
                break;
            }else if(cur.val < key){
                parent = cur;
                cur = cur.right;
            }else{
                parent = cur;
                cur = cur.left;
            }
        }
    }
    // 輔助刪除方法:真正刪除節點的代碼
    private void removeNode(TreeNode cur,TreeNode parent){
        // 情況一
        if(cur.left == null){
            if(cur == this.root){
                this.root = this.root.right;
            }else if( cur == parent.left){
                parent.left = cur.right;
            }else{
                parent.right = cur.right;
            }
            // 情況二
        }else if(cur.right == null){
            if(cur == this.root){
                this.root = root.left;
            }else if(cur == parent.left){
                parent.left = cur.left;
            }else{
                parent.right = cur.left;
            }
            // 情況三
        }else{
            // 第二種方法:在刪除節點的右子樹中尋找最小值,
            TreeNode parentDummy = cur;
            TreeNode curDummy = cur.right;
            while(curDummy.left != null){
                parentDummy = curDummy;
                curDummy = curDummy.left;
            }
            // 此時 curDummy 指向的 cur 右子樹
            cur.val = curDummy.val;
            if(parentDummy.left != curDummy){
                parentDummy.right = curDummy.right;
            }else{
                parentDummy.left = curDummy.right;
            }

        }
    }
   // 中序遍歷
    public void inorder(TreeNode root){
        if(root == null){
            return;
        }
        inorder(root.left);
        System.out.print(root.val+" ");
        inorder(root.right);
    }

    public static void main(String[] args) {
        int[] array = {10,8,19,3,9,4,7};
        BinarySearchTree binarySearchTree = new BinarySearchTree();
        for (int i = 0; i < array.length; i++) {
            binarySearchTree.insert(array[i]);
        }
        binarySearchTree.inorder(binarySearchTree.root);
        System.out.println();// 換行
        System.out.print("插入重復的數據 9:" + binarySearchTree.insert(9));
        System.out.println();// 換行
        System.out.print("插入不重復的數據 1:" + binarySearchTree.insert(1));
        System.out.println();// 換行
        binarySearchTree.inorder(binarySearchTree.root);
        System.out.println();// 換行
        binarySearchTree.remove(19);
        System.out.print("刪除元素 19 :");
        binarySearchTree.inorder(binarySearchTree.root);
        System.out.println();// 換行
        System.out.print("查找不存在的數據50 :");
        System.out.println(binarySearchTree.search(50));
        System.out.print("查找存在的數據 7:");
        System.out.println(binarySearchTree.search(7));
    }
}

性能分析

  插入和刪除操作都必須先查找,查找效率代表了二叉搜索樹中各個操作的性能。

  對有n個結點的二叉搜索樹,若每個元素查找的概率相等,則二叉搜索樹平均查找長度是結點在二叉搜索樹的深度的函數,即結點越深,則比較次數越多。

  但對于同一個關鍵碼集合,如果各關鍵碼插入的次序不同,可能得到不同結構的二叉搜索樹:

如果我們能保證 二叉搜索樹的左右子樹高度差不超過1。盡量滿足高度平衡條件。
這就成 AVL 樹了(高度平衡的二叉搜索樹)。而AVL樹,也有缺點:需要一個頻繁的旋轉。浪費很多效率。
至此 紅黑樹就誕生了,避免更多的旋轉。

和 java 類集的關系

TreeMap 和 TreeSet 即 java 中利用搜索樹實現的 Map 和 Set;實際上用的是紅黑樹,而紅黑樹是一棵近似平衡的二叉搜索樹,即在二叉搜索樹的基礎之上 + 顏色以及紅黑樹性質驗證,關于紅黑樹的內容,等博主學了,會寫博客的。

總結 

到此這篇關于java基礎二叉搜索樹的文章就介紹到這了,更多相關java二叉搜索樹內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!

相關文章

  • Spring注解配置IOC,DI的方法詳解

    Spring注解配置IOC,DI的方法詳解

    這篇文章主要為大家介紹了vue組件通信的幾種方法,具有一定的參考價值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來幫助
    2022-01-01
  • java 中ArrayList迭代的兩種實現方法

    java 中ArrayList迭代的兩種實現方法

    這篇文章主要介紹了java 中ArrayList迭代的兩種實現方法的相關資料,Iterator與for語句的結合,需要的朋友可以參考下
    2017-09-09
  • java中分組統計的三種實現方式

    java中分組統計的三種實現方式

    這篇文章主要介紹了java中分組統計的三種實現方式,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
    2021-07-07
  • spring boot中interceptor攔截器未生效的解決

    spring boot中interceptor攔截器未生效的解決

    這篇文章主要介紹了spring boot中interceptor攔截器未生效的解決,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
    2021-09-09
  • Spring SpringMVC在啟動完成后執行方法源碼解析

    Spring SpringMVC在啟動完成后執行方法源碼解析

    這篇文章主要介紹了SpringMVC在啟動完成后執行方法源碼解析,還是非常不錯的,在這里分享給大家,需要的朋友可以參考下。
    2017-09-09
  • Spring擴展接口知識總結

    Spring擴展接口知識總結

    今天帶大家學習Java Spring的相關知識,文中對Spring擴展接口作了非常詳細的介紹及代碼示例,對正在學習java的小伙伴們有很好地幫助,需要的朋友可以參考下
    2021-05-05
  • 詳解Springboot之接收json字符串的兩種方式

    詳解Springboot之接收json字符串的兩種方式

    這篇文章主要介紹了Springboot之接收json字符串的兩種方式,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧
    2020-09-09
  • Java解析DICOM圖之如何獲得16進制數據詳解

    Java解析DICOM圖之如何獲得16進制數據詳解

    DICOM就是醫學數字成像和通信,是醫學圖像和相關信息的國際標準(ISO 12052),下面這篇文章主要給大家介紹了關于Java解析DICOM圖之如何獲得16進制數據的相關資料,文中通過示例代碼介紹的非常詳細,需要的朋友可以參考下。
    2017-10-10
  • Java 線程池ThreadPoolExecutor源碼解析

    Java 線程池ThreadPoolExecutor源碼解析

    這篇文章主要介紹了Java 線程池ThreadPoolExecutor源碼解析
    2022-03-03
  • 淺談Spring Boot 屬性配置和自定義屬性配置

    淺談Spring Boot 屬性配置和自定義屬性配置

    這篇文章主要介紹了淺談Spring Boot 屬性配置和自定義屬性配置,小編覺得挺不錯的,現在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
    2018-03-03

最新評論

免费人成视频在线观看